
Joe Grassl

Racecar

1. The program asks for a name, a nickname, and a choice of car.

2. Car #1 always wins race #2 and vice versa. The program displays an error 
because it can’t find a flag.txt file on my computer.

3. Creating flag.txt allows the program to continue and print out your victory 
message.



4. After trying a few different inputs to check for a buffer overflow, I decided to
look for a format string vulnerability. The program prints a memory address. 
Format string vuln confirmed.

5. Searching memory in GDB reveals that the contents of my local flag.txt file 
are on the stack.

6. The input below asks for a whole bunch of pointers in order to dump the 
stack. The 12th pointer contains little-endian hexadecimal that decodes to 
“blah”, the text in my flag.txt file.

7. I used the same input on the target server to dump its stack.



8. Then, I wrote the following script to automatically decode the stack values 
to ASCII text. It’s a more robust implementation of the code used to solve a 
similar challenge, as shown here: https://breadchris.github.io/ctf/format-
string/2015/05/04/backdoor-team.

9. The flag decodes perfectly! Because the flag format is always HTB{(flag)}, 
everything after the right curly bracket can be ignored. Mission accomplished!


