
!gnireenignE
A Reverse Engineering Primer by

Chris Davisson & Joe Grassl



Fundamentals

Reverse engineering is very useful for:

• Finding hardcoded or dynamically generated credentials (passwords)

• Vulnerability discovery and exploit development

• Modding, patching, and otherwise reading/modifying things that the 
creator of a program thinks or hopes you won’t be able to

• Keeping China’s economy afloat



Terminology

• Crack – To defeat a security mechanism

• Patch – To modify a program without changing the actual source code

• Block – A unit of linear code that ends in a conditional fork 
(true/false), a jump to another block, or a simple exit.

• Obfuscation – Hiding the true nature of the code through clever code 
mangling. Looks like gibberish. Not the same as encryption (but may 
include it).



Terminology – Part 2

• Static Analysis – The program is tested “at rest”. Involves looking at 
disassembled code and mentally modeling what the program should 
do.

• Dynamic Analysis – The program is tested live. Inputs are given to the 
running program and breakpoints are set to look at values in memory.

• Debugger – Allows you to do dynamic analysis. GDB, for example.

• Disassembler – Produces low-level output from a compiled program.

• Decompiler – Produces high-level output from a compiled program. 
Sometimes very close to the true source code itself!



Reverse Engineering 
in C/C++
radare2 & ghidra



Ghidra

• An open-source reverse engineering tool

• Developed by the NSA in 2019

• First revealed in WikiLeaks in 2017

• Looks like it was made in the 90's but has some 
cool functionality.

• Estimates the C code

• Decompiles the header file



Radare2

• A Free framework for reverse-engineering and 
analyzing binaries

• Created in 2006 as an interface for editing 
hexadecimal an hard drive recovery.

• Created by Sergi Alvarez aka. pancake



Example Run

• Runs using the r2 keyword 
after compiling in command 
line

• S main seeks to the main

• Aaa is to tell it what to 
analyze



• Using the command: pdf

• Displays what the code is doing.

• Though it looks complex, we can 
see that a string is easily visible.

• "SuperSeKretKey"



This String is the first password that was required. Though after, it called a function that would always 
give false.

The method is the line with jne 0x400976
And if we seek into that method, all we see is that it will always return false, forcing the user out of the program.
To combat this we can simply set the method to "nop" or no operation.



Explanation

• The Radare2 software allows us to analyze 
what is happening inside the software. So if 
you have user input being compared to a 
string, it can see the string.

• If you have a gatekeeper method that is just 
changing a Boolean, it can alter 
the compiled code to just bypass it.

• I'm not a good hacker, and I was able 
to crack the security provided this program 
quickly. (Just think what someone good at it 
could do)



Reverse 
Engineering in C#

dnSpy & de4dot



dnSpy & de4dot

• Similar look and feel to Visual Studio

• Cool functionality

• Allows you to alter values during runtime

• Some programs are obfuscated and very hard to 
read and edit

• de4dot can be used to remove well known 
obfuscation schemes in about three clicks



DnSpy Visual Studio Style



Lists of methods and variables



We can see that the main aka "0" 
method first creates a bool called 
flag, then assigns flag2 to it too.

If flag2 is false, then it just repeats.

The method it calls to is method 1, 
that always returns a false. User 
entry doesn't even matter.

You could enter anything or 
nothing, it don't care. All answers 
are wrong



Bool values before changing

Bool values after changing



After passing that check, it 
takes you to method 2.

This accepts user input and 
compares it against a string. 
Unlike java, the == is a valid 
way to compare strings

So we have two options, 
change the flag variable or 
find the value or 
<<Empty_Name>>



Using breakpoints we can see the value of <<Empty_Name>>

Final run after changing bool value and finding secret Key

Hacked!



Final 
Thoughts

• The dnSpy software provides 
many tools that make looking at 
decompiled code a lot less 
daunting

• The gui makes all the 
information easy to see and 
understand

• Changing the value of variables is 
too powerful



Also... I found the matrix source code in the 
Hex Editor



Reverse Engineering 
in Android

apktool, jadx, & mitmproxy



Android Debug Bridge

ADB is the Android hacker’s bread and butter.

• Powerful command shell

• Connects your laptop to the Android file system

• Lots of special features

Let’s install an app and take a copy of it off the phone!



apktool

apktool is a disassembler. It lets you read, edit, and repack Android 
apps. Here’s how it works:

• Android apps are packaged as .apk (Android Package) files.

• These are basically just zip archives.

• Most of the code is stored in a file called classes.dex.

• Dex (Dalvik Executable) is a format similar to .class but made to run 
more efficiently on mobile platforms.

• apktool converts the .dex code into .smali files.

• Smali is basically the Android version of assembly language. It’s 
human-readable bytecode.



apktool in action!



The App

Here’s the example app being run. 

Note the “Invalid serial!” message.



It’s a Smali world after all!

In Main.smali, you can see the serial check by searching for the error 
message. Note the validateSerial(String) function and the “if-nez”.



Making Smali talk

validateSerial() is very simple. It just gets the phone’s IMEI number 
performs a message digest on it.



Side note: IMEI

• International Mobile Equipment Identity

• Uniquely identifies a mobile device at the hardware level regardless 
of the assigned phone number or SIM card

• Used by ISPs to track stolen phones (or just phones the government is 
interested in)



Getting the IMEI via ADB



Doing a Keygen the jshell Way

This is basically the same code seen in the Smali.



Success!

Houston, we have pwnage!





Additional Techniques

• Patching

• Decompilation

• Traffic capture (man-in-the-middle)



Patching Android Apps

Remember that “if-nez” line back in the Smali code? Let’s reverse it –
literally!



Patching Android Apps

Now we just need to repack, resign, and zip-align.

Works just as well as the previous technique. There are often many paths to a successful crack.



Decompiling Android Apps

Smali is fairly readable but wouldn’t plain Java be even nicer? Well, with jadx you can have both!

Note: jadx’s output can’t actually be recompiled, so use it as a reference.



Capturing Android Traffic

Step one is to set up a proxy on the WiFi network

of your choice. The proxy config will connect to your

laptop running mitmproxy.



Capturing Android Traffic

Next, fire up mitmproxy and

browse (on Android) to mitm.it.

Install the certificate.



Capturing Traffic on Android

I’m using InsecureBankv2 for the 

demo. I’ve set it to try and send the 

login request to Google’s famous

8.8.8.8 DNS server.



Capturing Traffic on Android

Boom! Plaintext creds in full view!



Reverse Engineering 
with Angr



What the heck is it?

• A tool for “concolic analysis” and “symbolic execution”.

What the heck does that mean?

• Breaks the program into a set of logical symbols

• Uses the dark sorceries of discrete mathematics to find 

the input that satisfies a set of constraints

• Simulates various execution paths without actually 

running the program



What the heck is it?

• Invented by legendary CTF team Shellphish.

• Can be further automated to hack complex, unknown binaries in 
seconds with zero user input.

• I’m not joking. This has literally already been done. Shellphish won a 
DARPA challenge that way.

Infinite realities, 
Morty! In one of 

them, this program is 
already hacked!



Angr Management

This is program that will be attacked.



Angr Management

The first step is to find the memory addresses you want to hit and 
those you want to miss. Note the “Try again.” and “Good Job.” 
messages with associated control flow arrows.



Angr Management

Now you just need a script like this. Nothing too crazy, right?



Angr Management

And behold! The program is defeated by the sheer power of that black 
magic known as discrete math!



our

final presentation!


