
Joe Grassl

Space Pirate: Retribution

1. Checking the binary’s security features reveals that we’ll have to bypass 
position-independent execution, a non-executable stack, and, most likely, 
address space layout randomization.

2. Opening the program in radare2 shows that it will loop back to main after 
the missile_launcher function no matter what.

3. To bypass NX, we need a ROP chain. To get a ROP chain, we need to 
bypass ASLR. To bypass ASLR, we need to bypass PIE. To bypass PIE, we 
need a memory leak. Running the program in GDB (where ASLR is disabled) 
continuously outputs the string “@UUU” after entering any new coordinates. 
When running the program normally (with ASLR), this little string of 
characters is different on every run. This means that it is very likely to be a 
memory leak from a flawed format string.



4. Decoding from ASCII to hexadecimal reveals that it is, in fact, most of a 
memory address. Comparing it to the addresses in the image above, you can 
see that this is essentially the base address from which PIE calculates the 
actual addresses used on each run based on offsets.

5. With the memory leak found, all that’s needed is to write an exploit with 
pwntools. The code below fetches the PIE leak and uses a standard ROP 
chain to use the puts function to leak its own address. See the references 
section at the end of the writeup for the resources I used to learn this 
technique.

6. Here, the script calculates the libc address based on the second leak and 
the offset of puts in the given libc library that came with the binary. Finally, it 
generates another ROP chain to return a shell and sends it to the server.



7. The exploit succeeds, a shell is returned, and the flag can be printed with a
single command!


